skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Steinke, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2026
  2. Free, publicly-accessible full text available February 10, 2026
  3. Free, publicly-accessible full text available December 10, 2025
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    We present three new algorithms for constructing differentially private synthetic data—a sanitized version of a sensitive dataset that approximately preserves the answers to a large collection of statistical queries. All three algorithms are \emph{oracle-efficient} in the sense that they are computationally efficient when given access to an optimization oracle. Such an oracle can be implemented using many existing (non-private) optimization tools such as sophisticated integer program solvers. While the accuracy of the synthetic data is contingent on the oracle’s optimization performance, the algorithms satisfy differential privacy even in the worst case. For all three algorithms, we provide theoretical guarantees for both accuracy and privacy. Through empirical evaluation, we demonstrate that our methods scale well with both the dimensionality of the data and the number of queries. Compared to the state-of-the-art method High-Dimensional Matrix Mechanism (McKenna et al. VLDB 2018), our algorithms provide better accuracy in the large workload and high privacy regime (corresponding to low privacy loss epsilon). 
    more » « less
  7. Henzinger, M (Ed.)
    We propose truncated concentrated differential privacy (tCDP), a refinement of differential privacy and of concentrated differential privacy. This new definition provides robust and efficient composition guarantees, supports powerful algorithmic techniques such as privacy amplification via sub-sampling, and enables more accurate statistical analyses. In particular, we show a central task for which the new definition enables exponential accuracy improvement. 
    more » « less